Теперь Кью работает в режиме чтения

Мы сохранили весь контент, но добавить что-то новое уже нельзя

Может ли существовать пространство с нецелым количеством измерений? Какие формулы линейной алгебры или физики допускают такие пространства?

ФизикаПространство+2
Andrey Sevostianov
  ·   · 13,6 K
Член ММО - Московского математического Общества...  · 27 нояб 2022
Понятия числа измерений множества как фигуры и целиком об'емлющего эту фигуру пространства суть одни из самых трудных в математике.
Даже инвариантность / корректность размерности кнечномерного линейного пространства вызывает значительные затруднения у изучающих [в первых редакциях Курса высшей алгебры А.Г. Куроша теорема (Маклейна-) Евг Штейница о замене выделялась специальным образом].
Понятие топологической размерности через кратность покрытия замкнутыми множествами была определена в начале (в 20-х) годах прошлого века в основном П.С. Урысоном и Карлом Менгером.
После этого понятие размерности многократно исследовалось и обобщалось, при этом расширялся класс фигур, к которым это понятие было применимо.
Такие внешне "патологические" образования исследовались Феликсом Хаусдорфом (до его гибели в Германии) и Абрамом Самойловичем Безиковичем, эмигрировавшим в Англию (успел при большевиках и / или Колчаке побывать ректором Пермского университета) индивидуально и с, в основном, значительным физиком Урселлом (его именем названы специальные функции в статистической механике).
Затем стараниями и (само-)рекламой господина Бенуа Мандельброта вновь возник интерес к этим понятиям, связанным с фрактальной = дробной (une fraction = дробь) в смысле Безиковича - Хаусдорфа размерностью в некоторых так называемых самоподобных фигурах.
С некоторыми перерывами этот интерес продолжен по сю пору в физических исследованиях, опирающихся на самоподобие в теории перколяции = протекания, в вычислении так называемых критических индексов. А также в некоторых специальных теоретико-числовых исследованиях.
Всё это имеется в специальной и в даже учебной литературе.
Л.К.
Топологические понятия нельзя применять в лоб  к физическим объектам  - вопрос обсуждался здесь. Это касается и... Читать дальше
Физика, математика, психология  · 27 нояб 2022  · askanswer.ru
Нам трудно представить вселенные с другими физическими законами, с другой топологией и другим, тем более нецелым числом измерений пространства и времени. Но как говорил Р. Толмен о том, что Вселенная не обязана обладать теми же... Читать далее
Askanswer Q&A - сайт вопросов и ответов!Перейти на askanswer.ru
1 эксперт согласен
4-х мерная размерность пространства  -абстракция человека. Очень может быть нецелочисленная размерность, еще не... Читать дальше
к.ф.м.н., доцент МФТИ, с.н.с. Института Проблем...  · 2 дек 2022
Во-первых несколько неплохих ответов уже было, в частности очень неплох ответ Леонида Коганова.  Во-вторых, само по себе понятие "измерений" достаточно неудачно. Всё-таки обычно говорят о размерности пространства, но тут... Читать далее
Математика, политика, высшая школа и хейт спичПерейти на t.me/forodirchNEWS
Если возможно оценить некие формы и качества глобальных представлений ПРОСТРАНСТВА-ВРЕМЕНИ, то почему не ставится... Читать дальше
Я очень рад быть частью этой группы и надеюсь...  · 9 дек 2022
Пространство может иметь нецелое число измерений. Фактически, любые научные теории, включая теорию струн и некоторые модели Вселенной, предполагают существование пространств с дробными или даже отрицательными измерениями. Матема... Читать далее
Раз математики говорят, что может - то может. Важно, как они считают размерности.
Digital marketer, researcher and data analyst  · 21 дек 2022
Да, существуют пространства с нецелым количеством измерений. Они называются пространствами с нецелочисленным измерением или фрактальными пространствами. Они были изучены в математике и физике в конце 20-го века. Одним из... Читать далее
Интересуюсь устройством мира, как внешнего так и в...  · 16 дек 2022
Измерения могут быть полноценными или нет, ограниченными или свободными. Но они НЕ могут быть "не целыми". Это же всего лишь точка свободы. Она либо есть, либо её просто нет. Даже точка не полной свободы уже считается за... Читать далее
А как же Мандельброт с его "Фрактальной геометрией природы", в которой он рассуждает о дробных размерностях, при... Читать дальше
отшельник, схимник, человек  · 8 дек 2022
В естестве природы, нет дробных универсалий. Универсалии, это предельно самодостаточные ОГэЯ (объекты, группы и явления). Пространство, это доступная органам чувств людей, сфера восприятия, хотя бы посредством инструментария. Пр... Читать далее
https://dzen.ru/deciptikon  · 21 нояб 2022
Количество измерений - абстракция. В зависимости от того, как мы будем это число определять получим разные результаты.  Снежинку можно считать плоской, снежинку можно считать объемной, снежинку можно считать фракталом... Читать далее
Согласен на счёт матриц. Что за таблица может иметь дробное кол-во столбцов или строк? Есть что-нибудь похожее в математике?))
Математика  · 27 нояб 2022
Могут. Это так называемые дробные пространства. Это относится к функциональному анализу, но может быть существует где-то еще. Насчет существования дробных измерений в реальном мире - не знаю.  
Дробные измерения в мире существуют, хотя бы с помощью обычной логарифмической линейки. Не будем заморачиваться... Читать дальше
Александр Владимирович Овод, пенсионер Горный...  · 19 дек 2022
В глобальном смысле существование пространств с дробной мерностью, я не верю. Но вполне возможно локальное нарушение целочисленности мерности, ведь треклятый принцип неопределенности Гейзенберга пока еще ни кто не отменял. А на... Читать далее
1 эксперт не согласен
Принцип неопределенности Гейзенберга не имеет никакого отношения к размерности пространства. Эксперименты по... Читать дальше