Есть несколько классических способов отвечать на этот вопрос. Можно выбрать любой на свой вкус в зависимости от своих ценностей и ожиданий от того, что в вопросе называется жизнь — они очень разные у всех.
Распространенный заход — через приложения. Часто от коллег-учителей можно услышать рассуждения о том, что математика встречается везде. Если вы музыкант, то полезно что-то понимать про колебания. Если вам надо крышу на даче покрыть, то нужны какие-то вычисления площади покрытия (я, кстати, не шучу, видел буквально эту задачу в одном приложении для школьников). И так далее, приводятся примеры применения математики часто на грани абсурда.
На мой взгляд, позиция критики не выдерживает сразу по двум соображениям. Во-первых, это просто не так. Наверное, если заниматься очень сложной музыкой на стыке с ее теорией, то знать про колебания может быть полезно. В остальном — нет. Большая часть аргумента рассыпается на этом этапе. Во-вторых, прямо скажем, содержание математики все-таки не про это.
Вторая (по распространенности на моем опыте) аргументация строится на рабочих перспективах. И она кажется мне более весомой. Если мы смотрим в настоящее — в целом ряде профессий школьная математика (а я подозреваю, что в вопросе имеется в виду школьная алгебра), некоторые олимпиадные вещи, а часто и базовый курс высшей математики, является совершенно базовыми навыками, без которых трудновато. Да, их можно доучить в процессе. Но лучше сделать это в специально выделенное под учебу время в жизни. Да, это некоторый вполне выделенный спектр профессий. Многие из них очень неплохо оплачиваются (не факт, что будут завтра). На всякий случай уточню, что нет совершенно ничего зазорного в том, чтобы работать в области, где вам формулы не понадобятся, и зарплаты там тоже бывают неплохие.
Здесь тоже есть разрез критики, связанный с тем, что если такой вопрос возникает, то, возможно, это не та сфера, в которой стоит искать работу. На это можно ответить только одно — во всяком случае, я настоятельно рекомендую никогда не составлять впечатление от предмета по работе одного или нескольких педагогов. Иногда, увы, проблема не в предмете. Попробуйте посмотреть тематический ютуб или послушать лекции. Вдруг понравится.
Позиция, которой придерживаюсь я, отчасти пересекается с предыдущими. Но лишь отчасти. На мой взгляд, задача школьного образования — в первую очередь не выдать человеку набор фактов (это тоже), а позволить завести оптику своей науки. Если не завести, то хотя бы подглянуть в нее. Если не подглянуть, то хотя бы дать понимание, что эта специфическая оптика есть. То есть полезно и здорово знать про бином Ньютона, но важнее понимать, как работает доказательство в математике. С готовой оптикой, с освоенной культурой предмета нужные навыки подтянуть сильно проще, чем наоборот, а значит это ставит вас в более гибкую ситуацию — едва ли вы сейчас точно понимаете, как будет развиваться ваша жизнь в следующие 10-20 лет. Едва ли кто-то знает. Скорее всего, вы будете пробовать разные направления, смените несколько работ, будете искать то, что вам по вкусу — и для этого нужна широкая база (фактическая, но в первую очередь культурная). С навыками проблема в том, что мы, по большому счету, не очень хорошо понимаем, что будет востребовано через 10-20 лет. Есть прогнозы, но мир стал очень сложный и быстрый и это скорее вопрос веры. Может быть, завтра большинство кодеров заменят их коллеги из развивающихся стран. Или боты. Может быть, тоже самое произойдет с дизайнерами. Может быть, мир скатиться в тотальную войну и будут важны навыки лечить болезни, стрелять из автомата и чинить предметы подручными средствами. С оптикой такое вряд ли произойдет — едва ли мы в ближайшие 10-20 лет отринем математику или опровергнем химию. В этом смысле кажется правильным на школьном уровне и младших курсах сформировать некоторый базовый уровень, чтобы из него перестраиваться туда, куда вы хотите.