Нет сомнения в том, что Георг Кантор великий математик. Но в его теории множеств, которая претендовала на то, чтобы стать основанием всей математики, есть результаты, которые являются поводом для сомнений. Вот один из них.
С помощью предложенного Кантором принципа взаимно однозначного соответствия доказано, что имеются случаи, когда бесконечное множество равномощно своему строгому подмножеству, в частности, натуральный ряд имеет ту же мощность, что и бесконечное множество четных чисел. Проследим первый этап доказательства этого утверждения.
Даны два ряда
1, 2, …, N;
2, 4, …, 2N.
С помощью принципа взаимно однозначного соответствия мы легко убеждаемся, что при стремлении N к бесконечности эти два ряда равномощны.
А теперь вспомним то что, если A – подмножество B, то любой элемент A является элементом B.
А теперь ответьте на вопрос:
при стремлении N к бесконечности на каком шаге число 2N становится элементом множества, у которого величина каждого числа не превосходит N?