Теперь Кью работает в режиме чтения

Мы сохранили весь контент, но добавить что-то новое уже нельзя

Почему синус от аргумента всегда(кроме случая x=0) меньше аргумента?

Возможно, я плохо искал, однако мне не удалось найти ответа на свой вопрос в привычных местах. Естественно, речь идёт об общем случае, а не о граничных, в которых это вполне очевидно. Я понимаю, что это, скорее всего, доказывается через окружность, однако почему-то не могу провести рассуждения, которые после понимания этого почти наверняка покажутся тривиальными. Заранее спасибо
МатематикаТригонометрия
Сергей Козлов
  ·   · 25,0 K
Математик-системный программист, разработчик асу...  · 13 апр 2022
На всякий случай сразу оговоримся, что аргумент синуса выражен именно в радианах.
Вспомним, что такое угол в радианах, угол в радианах это "длина дуги единичной окружности на которую опирается угол" (есть разные эквивалентные определения, нам сейчас удобно это).
Для начала рассмотрим обычный геометрический синус, реально существующего треугольника. 
Так как рисовать мне негде, будем по классике считать, что у нас есть координатная плоскость, в первой четверти есть луч образующий угол "а" с осью икс. 
Построим единичную(для удобства) окружность. 
Из точки пересечения "луча" и окружности(M) опустим перпендикуляр на ось икс, легко показать, что его длина будет равна "y". И так мы получили прямоугольный треугольник с катетами x,y, и гипотенузой "1" (так как радиус 1).  Строго по определению sin(a)=y/1=y
Дуга(единичной окружности), на которую опирается угол, это величина угла в радианах или просто "а". мы знаем, что кривая(дуга) соединяет точку, лежащую на оси икс и точку M, при этом мы знаем, что кратчайшее расстояние между точкой M и прямой(осью икс), это длина перпендикуляра опущенного из точки на прямую(как мы знаем это в точности "y"). Таким образом дуга не может быть меньше y, или "a>=y", а "y" это в точности sin(a) => a>=sin(a)
Если переходить к обобщениям тригонометрической функции на тупые и отрицательные углы, то
1) известно что синус(действительного аргумента) всегда <=1. угол 1 радиан лежит ещё в первой четверти, для которой мы утверждение доказали, для а>1>=sin(a) верность вполне очевидна.
2) Для отрицательных углов выполняется обратное неравенство. это легко можно показать просто из нечётности синуса( sin(-a)=-sin(a) ), 
для а<=0, пусть b=-a, тогда b есть положительное, для него мы уже доказали
sin(b)<=b 
-sin(b)>=-b {умножили на -1 обе части неравенства, поменяв знак неравенства так как умножали на отрицательное число}
sin(-b)>=-b => sin(a)>=a (как помним, для отрицательных "а")
Маклореновский ряд в нуле из первых двух членов с остатком по Лагранжу не пробовали смотреть при малых, но... Читать дальше
По образованию физик и математик (МФТИ)....  · 17 апр 2022
Ну и напридумывали ответов, аж до рядов дошли)). Все просто.Из определения синуса через единичную окружность. Синус -отрезок AP, аргумент -дуга PB. Что больше, хорда или дуга? (здесь полхорды и полдуги) Читать далее
2 эксперта согласныи1 эксперт не согласен
sin x > x всегда при x < 0, x ∈ ℝ.
Инженер электронной техники, программист.  · 21 апр 2022
Потому, что синус, как и косинус по определению это проекции единичного вектора на координатные оси. В этой метрике проекция прямая и не может быть больше объекта, ее создающую. 
более, этого, это переформулировка другого вопроса - "почему синус меньше 1", а не почему меньше х
Простые числа. Преподаватель с 2001, к.т.н. Яндекс...  · 13 апр 2022
Разложение синуса в ряд Тейлора (х - в радианах): sin(x) = x - x^3/3! + x^5/5! - x^7/7! + … Как видите, каждый следующий аргумент меньше предыдущего, таким образом синус от аргумента становится меньше самого аргумента (по... Читать далее
1 эксперт согласени3 эксперта не согласны
Подставляю x=10^3 и вижу что это не так.
Инженер путей сообщения – строитель  · 12 апр 2022
Потому-что синус есть отношение катета к гипотенузе. А катет всегда меньше гипотенузы, что ещё древние греки знали, называя своими именами аксиомы и теоремы геометрии.
3 эксперта не согласны
Аргумент синуса в рассуждениях вообще никак не участвует. В лучшем случае показано, что sin(a)<=1