Теперь Кью работает в режиме чтения

Мы сохранили весь контент, но добавить что-то новое уже нельзя

Для чего нужна нейронная сеть?

Искусственный интеллект+2
Анонимный вопрос
  ·   · 21,5 K
На Кью задали 1 похожий вопрос
Маклауд — хостинг облачных серверов для профессион...  · 23 мая 2022  · macloud.ru
Нейронная сеть нужна для автоматизации процессов и уменьшения роли человека в работе. Нейросети имеют очень широкое применение в разных сферах:
1) Прогнозирование.
2) Анализ данных.
3) Оптимизация процессов.
4) Формирование рекомендаций.
Маклауд — хостинг облачных серверов для профессионаловПерейти на macloud.ru
Первый
Data Scientist (Computer Vision)  · 22 июн 2019  ·
deep_nn
Нейронная сеть - это один из программных механизмов, который позволяет программе обучаться, то есть учитывать опыт. Чем больше подходящих для обучения данных имеется, тем, как правило, лучше (при условии, что распределение... Читать далее
нейронная сеть это некая попытка человека смоделировать то, что происходит в нашем мозгу. Как показала практика... Читать дальше
Увлекаюсь физикой, астрономией и финансами.  · 18 июл 2022  · forecast.nanoquant.ru
Нейросети, в основном, показали очень хорошие результаты при решении следующих задач: 1. Распознавание объектов на картинках (в том числе и на видео, так как видео, это серия картинок). 2. Распознавание аудиоречи человека. 3... Читать далее
Эксперт по оптимизации инвестиционного портфеля и прогнозированию биржевых цен.Перейти на forecast.nanoquant.ru
Комплексный Digital-маркетинг для бизнеса  · 28 апр 2020  · zoola.ru
Отвечает
Константин
Нейросеть - упрощенная цифровая модель мозга органического существа. По сути, этот иструмент решает узкопрофильные задачи обобщения и сортировки данных (кластеризации). Приведу известную задачу про Титаник. Всего катастрофа... Читать далее
Узнайте подробнее об агентстве Zoola на нашем сайтеПерейти на zoola.ru
просто котик  · 10 июл 2019
Где применяются нейросети До широкой аудитории доходят только громкие случаи применения нейросетей. Например, когда нейросеть Яндекса записывает музыкальный альбом или ребята из Беларуси снимают короткометражку по сценарию... Читать далее
Евробайт — надежный хостинг  · 6 мая 2022  · eurobyte.ru
Отвечает
Artem Harin
Нейронные сети являются одним из направлений искусственного интеллекта (ИИ), поэтому заложенные в них алгоритмы способны решать проблемы, которые требуют от человека глубокого анализа внешнего мира и творческого подхода. Умные... Читать далее
Евробайт — надежный и быстрый веб-хостинг для сайтов. От 144 ₽/мес.Перейти на eurobyte.ru
Я не компетенцен, чтобы давать те или иные...  · 30 окт 2020

Нейронная сеть особенно необходима в тех случаев когда имеет место дименция или же просто плохая память или соотвественно ухудшенная реакция

Продажа смарт пленки и монтаж стекол с затемнением...  · 13 июл 2019
нейронная сеть работает на тех же принципах, что и наш мозг. Данный сеть может самообучаться и развивать свои способности из года в год. Сам процесс обучения происходит постоянно и не является подконтрольным процессом, плотно... Читать далее
В данный момент нейронные сети являются развивающимся направлением, связанным с искусственным интеллектом. Их можно использовать в рамках задач, требующих анализа. Зачастую касается анализа фотографий или текста. С другой... Читать далее
Если женщина внезапно замолкла, значит, она хочет...  · 8 нояб 2018
Нейронные сети нужны для того, чтобы решать супер сложные задачи, которые требуют аналитических способностей, присущих лишь человеку. Например, их применяют при решении таких задач, как - классификация - нейронная сеть может... Читать далее
Ответы на похожие вопросы
Как работают нейронные сети? — 5 ответов, задан 
Openstack DevOps and IBM/Informix Certified DBA...  · 25 мар 2022
Что отличает нейронные сети от других алгоритмов машинного обучения, так это то, что они используют архитектуру, вдохновленную нейронами в мозгу. «Нейрон мозга получает ввод и на основе этого ввода запускает вывод, который используется другим нейроном. Нейронная сеть имитирует это поведение при изучении собранных данных и последующем прогнозировании результатов», — объясняет Марк Штадтмюллер, вице-президент по продуктовой стратегии поставщика платформы искусственного интеллекта Lucd. Это увлекательно, но прежде чем мы углубимся, давайте вернемся назад и посмотрим на нейронные сети в контексте искусственного интеллекта и машинного обучения.
======================
Нейронные сети — это один из подходов к машинному обучению, одно из приложений ИИ. Давайте разберемся.
======================
Искусственный интеллект — это концепция машин, способных выполнять задачи, которые, казалось бы, требуют человеческого интеллекта.
Машинное обучение, как мы уже говорили ранее, является одним из приложений искусственного интеллекта. Это включает в себя предоставление компьютерам доступа к массиву данных и предоставление им возможности искать оптимальные решения. Алгоритмы машинного обучения могут улучшаться без явного программирования. Другими словами, они могут находить закономерности в данных и применять их для решения новых задач в будущем. Глубокое обучение — это подмножество машинного обучения, в котором используются многоуровневые нейронные сети. Глубокая нейронная сеть анализирует данные с усвоенными представлениями, похожими на то, как человек смотрит на проблему. В традиционном машинном обучении алгоритму предоставляется набор соответствующих функций для анализа, однако при глубоком обучении алгоритм получает необработанные данные и сам получает функции.
======================
Глубокие нейронные сети
======================
Нейронные сети могут быть созданы как минимум из трех слоев нейронов: входного слоя, скрытого слоя (слоев) и выходного слоя. Скрытый слой — или слои — между ними состоит из множества нейронов со связями между слоями. По мере того, как нейронная сеть «узнает» данные, веса или сила связей между этими нейронами «настраиваются», что позволяет сети делать точные прогнозы.
Как мы уже говорили, алгоритмы машинного обучения нейронных сетей моделируются на основе того, как работает мозг, в частности, как он представляет информацию.
Когда нейронная сеть имеет много слоев, она называется глубокой нейронной сетью, а процесс обучения и использования глубоких нейронных сетей называется глубоким обучением. Глубокие нейронные сети обычно относятся к особенно сложным нейронным сетям. У них больше слоев (до 1000) и, как правило, больше нейронов на слой. С большим количеством слоев и нейронов сети могут справляться со все более сложными задачами; но это означает, что им требуется больше времени для обучения. Поскольку графические процессоры оптимизированы для работы с матрицами, а нейронные сети основаны на линейной алгебре, наличие мощных графических процессоров сделало возможным создание глубоких нейронных сетей. (GPU,CUDA LIBRARIES)
В нейронной сети информация передается в одном направлении по сети, где каждый слой полностью связан со своими соседями, от входных слоев к выходным и backpropagation. Однако есть два других типа нейронных сетей, которые особенно хорошо подходят для определенных задач: сверточные нейронные сети (CNN) и рекуррентные нейронные сети (RNN).
==================================
Что такое обратное распространение?
==================================
Обратное распространение — суть обучения нейронной сети. Это метод точной настройки весов нейронной сети на основе частоты ошибок, полученной в предыдущую эпоху (т.е. Итерацию). Правильная настройка весов позволяет снизить количество ошибок и сделать модель надежной за счет повышения ее обобщения. Обратное распространение в нейронной сети — это сокращенная форма «обратного распространения ошибок». Это стандартный метод обучения искусственных нейронных сетей. Этот метод помогает вычислить градиент функции потерь по отношению ко всем весам в сети.
=========================================
Зачем нам нужно обратное распространение?
==========================================
Наиболее заметными преимуществами обратного распространения являются:
Обратное распространение быстрое, простое и легко программируемое. У него нет параметров для настройки, кроме числа входных.
Это гибкий метод, поскольку он не требует предварительных знаний о сети. Это стандартный метод, который обычно работает хорошо. Особого упоминания об особенностях изучаемой функции не требуется.
Что такое сеть прямого распространения?
Нейронная сеть с прямой связью — это искусственная нейронная сеть, в которой узлы никогда не образуют цикл. Этот тип нейронной сети имеет входной слой, скрытые слои и выходной слой.
Это первый и самый простой тип искусственной нейронной сети.
===================================
Типы сетей обратного распространения
===================================
Два типа сетей обратного распространения:
Статическое обратное распространение. Повторяющееся обратное распространение.
  1. Статическое обратное распространение:
Это один из видов сети обратного распространения, который создает отображение статического ввода для статического вывода. Это полезно для решения задач статической классификации, таких как оптическое распознавание символов.
  1. Recurrent обратное распространение:
Периодическое обратное распространение в интеллектуальном анализе данных передается вперед до тех пор, пока не будет достигнуто фиксированное значение. После этого ошибка вычисляется и распространяется обратно.
==================================
Основное различие между обоими этими методами заключается в том, что отображение выполняется быстро при статическом обратном распространении и нестационарно при рекуррентном обратном распространении.
1 эксперт согласен
Как работают нейронные сети? — 5 ответов, задан 
Учёный, доктор наук, математика, информатика и...  · 28 мар 2022
Очень общий вопрос. Смысл работы нейронной сети Вам объяснили. если хочется узнать глубже то вот ссылка https://www.asimovinstitute.org/neural-network-zoo/
здесь собрана информация о различных архитектурах и приведены первоисточники : статьи, в которых впервые авторы описали принцип работы нейронных сетей того или иного типа
Как работают нейронные сети? — 5 ответов, задан 
Евробайт — надежный хостинг  · 22 мар 2022  · eurobyte.ru
Отвечает
Artem Harin
Нейронные сети являются одним из направлений искусственного интеллекта (ИИ), поэтому заложенные в них алгоритмы способны решать проблемы, которые требуют от человека глубокого анализа внешнего мира и творческого подхода.
Простыми словами, нейросеть — это обучаемая система, состоящая из нескольких нейронов, в каждом из которых информация обрабатывается в соответствии с особыми правилами (алгоритмами, математическими формулами и прошлым опытом).
Нейросети обрабатывают большое количество внешних факторов, оценивают степень влияния каждого из них на конечный результат и на основе этого находят лучший ответ на поставленную задачу.
Евробайт — надежный и быстрый веб-хостинг для сайтов. От 144 ₽/мес.Перейти на eurobyte.ru
Как работают нейронные сети? — 5 ответов, задан 

Если объяснять "на пальцах", то основными элементами любой нейросети являются нейроны. Каждый нейрон получает на вход один или несколько сигналов (чисел), обрабатывает их хитрым (или не очень) образом, а затем передает результат дальше.

Нейроны объединены в последовательно расположенные слои. Отдельно выделены два крайних слоя - входной и выходной. Через входной слой нейросеть получает информацию, через выходной передает результат ее обработки. Все промежуточные слои называются скрытыми.

Каждый скрытый слой соединен с двумя соседними (предыдущим и следующим) сложной системой связей (простите за тавтологию). В простейшем случае в каждый его нейрон попадают сигналы от каждого нейрона предыдущего слоя, обрабатываются, а затем из него уходят в каждый нейрон следующего слоя.

Однако, это еще не все. Каждая связь имеет "вес". То есть, сигнал от одного нейрона, пока идет до следующего, несколько меняет значение (значение этого сигнала умножается на этот "вес").

Если весам связей присвоить случайные значения, то ничего осмысленного такая нейросеть делать не будет. То есть, их надо еще как-то правильно подобрать. Иными словами, нейросеть надо обучить.

Как происходит обучение, проще показать на примере. Допустим, мы обучаем нейросеть отличать изображения кошек от изображений собак. Тогда на входной слой нейросети мы отдаем изображение, а на выходе нейросеть возвращает пару действительных чисел от 0 до 1 каждое. Первое означает, насколько нейросеть уверена, что это собака, а второе - что кошка. Почему делают именно так - вопрос, на который простым языком не ответить. То есть, если первое число больше, то нейросеть решила, что увидела собаку, а если второе, то кошку.

Итак, время обучать сетку. Даем нейросети изображение. Она отвечает нам этой самой парой чисел (a, b). Но мы-то знаем, кто  на картинке, правда? Поэтому мы поправляем нейросеть. А именно, мы "насильно запихиваем" в выходной слой пару (1, 0), если собака или (0, 1), если кошка, а дальше происходит некоторая магия (чтобы постичь ее, нужно обладать некоторым знанием математики), которая заставляет нейросеть перераспределять веса связей. Самый распространенный способ творить эту магию - т.н. "метод обратного распространения ошибки", но есть и другие.

Спустя множество разных картинок, с которыми мы провернем то же самое, веса связей между нейронами выстроятся таким образом, что она будет хорошо отличать кошек от собак.

Как видите, магия возникла только в двух местах. Чтобы разобраться, в ней, нужно читать более строгие тексты. Начать рекоммендую с этого:

wikipedia.orgИ/или

Искусственные нейронные сети применяются в различных областях науки: начиная от систем распознавания речи до распознавания вторичной структуры белка,...