В 1931 году Курт Гёдель доказал две теоремы. Первая, по сути, показывает, что математика содержит утверждения, которые, возможно, истинны, но по природе своей недоказуемы. Даже столь элементарная формальная система, как арифметика, допускает утверждения строгие, осмысленные и кажущиеся истинными, однако эта истинность не может быть доказана формальным путем.
Его вторая теорема показывает, что претензия арифметики на полноту как раз и является таким утверждением: она не может быть доказана никаким методом, опирающимся на аксиомы арифметики.