Number is a mental construct, о чем следует помнить. :) Континуум временной оси существует вне зависимости от выбранной нами числовой системы и концепция действительных чисел является вспомогательной моделью, а не не самим прообразом.
В "картине мира" Рихарда Юлиуса Дедекинда, Огюстена Луи Коши и Карла Теодора Вильгельма Вейерштрасса на временно́м отрезке в 5 минут, действительно, "как бы" находится точка "π-минут". "Как бы", потому что множество R не является счетным и точно ткнуть пальцем на n-й элемент множества невозможно по определению. Зато можно "оценить" этот самый континуум. А значит и выстроить на его основе теорию колебаний при помощи действительных чисел и тригонометрии, где момент π-й единицы времени будет встречаться постоянно.
Для работы с континуумом числа R\Q и даже, специфичнее, R\A нужны. Хотя, рациональные финитисты со мной не согласятся. В их картине мира ни R\Q , ни R\A не существует.